
Using .NET(Csharp) Implemented Data Transfer - Azure Blob

Storage to Web Application.

Problem Statement: -

 Our Company firstly use one specific server or database server to store files.

 We can upload only specific size of files. If we upload more then server file size then

Getting error-file storage has been full.

 When we use database server: -

 Massive increase in traffic between the web server and the database
 Slowdown in database performance
 Massive increase in the size of the database, resulting in a backup headache

 If you store docs outside of the database you will have missing documents and
broken links soomer not later. Your backup/restore scenario is a lot more
complex: you have no way to ensure that all data is from the same point in time.

Introduction: -

Microsoft offers several options to store data on the cloud. Each option has its unique purpose

for serving different business needs. One of the significant capabilities that Microsoft Azure

provides is the agility to migrate to different storage options if required.

There are various options available in the azure storage account for storing user data.

 Blob Storage

 File Storage

 Table Storage

 Queue Storage

 Disk

Architecture Diagram :

What is Azure Blob Storage?

Azure Blob Storage is an object storage solution for the cloud. Blob Storage allows you to store a

massive amount of unstructured data. The unstructured data need not be of the specific data

model.

What is Azure Blob Storage used for?

Azure Blob Storage was designed to serve specific needs. If your business use case needs to

store unstructured data like audio, video, images, etc then you should probably go with this

option. The objects which are being stored in Blob does not necessarily have an extension.

The following points describe the use case scenarios:

 Serving images or documents directly to a browser

 Storing Files for distributed access

 Streaming video and audio

 Writing to log Files

 Storing data for backup, restore, disaster recovery and archiving

 Storing data for analysis by an on-premises or Azure-hosted service

How does BLOB storage work?

Blob Storage comprises of three different types of resources:

1. The Storage Account

2. A container in the storage account

3. A blob in a container

Create a Azure Storage resource using Azure Portal :-

Code :

{
 "IsEncrypted": false,
 "Values": {
 "AzureWebJobsStorage": "<replace your blob storage connection
key here>",
 "ContainerName": "file-upload", // Container name
 "FUNCTIONS_WORKER_RUNTIME": "dotnet"
 }

}

using Azure.Storage.Blobs;
using Microsoft.AspNetCore.Http;
using Microsoft.AspNetCore.Mvc;
using Microsoft.Azure.WebJobs;
using Microsoft.Azure.WebJobs.Extensions.Http;
using Microsoft.Extensions.Logging;
using System;
using System.IO;
using System.Threading.Tasks;
namespace FileUploadFunction {
 public static class FileUpload {
 [FunctionName("FileUpload")]
 public static async Task < IActionResult > Run(
 [HttpTrigger(AuthorizationLevel.Anonymous, "post", Route =
null)] HttpRequest req, ILogger log) {
 string Connection =
Environment.GetEnvironmentVariable("AzureWebJobsStorage");
 string containerName =
Environment.GetEnvironmentVariable("ContainerName");
 Stream myBlob = new MemoryStream();
 var file = req.Form.Files["File"];
 myBlob = file.OpenReadStream();
 var blobClient = new BlobContainerClient(Connection,
containerName);
 var blob = blobClient.GetBlobClient(file.FileName);
 await blob.UploadAsync(myBlob);
 return new OkObjectResult("file uploaded successfylly");

 }
 }

}

using Azure.Storage.Blobs;
using Azure.Storage.Blobs.Models;
using Azure.Identity;

// TODO: Replace <storage-account-name> with your actual storage account name
var blobServiceClient = new BlobServiceClient(
 new Uri("https://<storage-account-name>.blob.core.windows.net"),
 new DefaultAzureCredential());

//Create a unique name for the container
string containerName = "quickstartblobs" + Guid.NewGuid().ToString();

// Create the container and return a container client object
BlobContainerClient containerClient = await
blobServiceClient.CreateBlobContainerAsync(containerName);

// Create a local file in the ./data/ directory for uploading and downloading
string localPath = "data";
Directory.CreateDirectory(localPath);
string fileName = "quickstart" + Guid.NewGuid().ToString() + ".txt";
string localFilePath = Path.Combine(localPath, fileName);

// Write text to the file
await File.WriteAllTextAsync(localFilePath, "Hello, World!");

// Get a reference to a blob
BlobClient blobClient = containerClient.GetBlobClient(fileName);

Console.WriteLine("Uploading to Blob storage as blob:\n\t {0}\n",
blobClient.Uri);

// Upload data from the local file
await blobClient.UploadAsync(localFilePath, true);

Console.WriteLine("Listing blobs...");

// List all blobs in the container
await foreach (BlobItem blobItem in containerClient.GetBlobsAsync())
{
 Console.WriteLine("\t" + blobItem.Name);
}

// Download the blob to a local file
// Append the string "DOWNLOADED" before the .txt extension
// so you can compare the files in the data directory
string downloadFilePath = localFilePath.Replace(".txt", "DOWNLOADED.txt");

Console.WriteLine("\nDownloading blob to\n\t{0}\n", downloadFilePath);

// Download the blob's contents and save it to a file
await blobClient.DownloadToAsync(downloadFilePath);

// Clean up
Console.Write("Press any key to begin clean up");
Console.ReadLine();

Console.WriteLine("Deleting blob container...");
await containerClient.DeleteAsync();

Console.WriteLine("Deleting the local source and downloaded files...");
File.Delete(localFilePath);
File.Delete(downloadFilePath);

Console.WriteLine("Done");

Challenges Faced :

Integration complexity: Syncing Azure Blob Storage with a .NET application

requires careful integration.

Data consistency: Ensuring data consistency between the application and Blob

Storage can be challenging.

Scalability considerations: Handling growing data volumes while maintaining

performance is a challenge.

Error handling and logging: Robust error handling and logging mechanisms are

necessary for troubleshooting.

Security and access control: Managing access control and security during

synchronization can be complex.

Business Benefit :-

 Perfect for small businesses and established enterprises — Azure is designed for

every business regardless of size, from the local bakery to multi-national corporations.

It’s easily scalable to meet your IT demands and operates on a pay-as-you-go pricing

model to meet any budget. Since businesses can launch and store internal and external

applications in the cloud, it also saves on in-house IT costs, including hardware and

maintenance.

 Complements and expands your current IT infrastructure — Azure allows your IT

personnel to focus on your business without having to worry about in-house capabilities

or maintaining equipment that is over-taxed or underused. The platform makes it fast and

easy to deploy your current apps with little to no downtime. An integrated development

environment reduces the learning curve, allowing teams to master the platform quickly.

Additionally, the platform has a footprint in more countries than Google or Amazon,

providing faster content delivery while optimizing the user experience. Azure is scalable

to grow with your company, and you pay for only what you need.

 Leading the way with IaaS and PaaS — At the forefront of IaaS and PaaS, Azure

offers rapid deployments. The hybrid cloud environment allows companies to select

whether they operate autonomously or utilize a public cloud. You are also able to decide

the level at which you are connected to the internet, if at all. Meet all your IT and service

needs without having to maintain the underlying infrastructure.

 Security, compliance, and disaster recovery — Microsoft understands the importance

of security and has designed Azure to stay ahead of the competition when it comes to

protecting your data. Azure has many compliance certifications and is a top choice of

high-risk industries such as health care and government to provide cloud services. Both

the platform and end users are protected. Additional services such as multi-factor

authentication and sophisticated disaster recovery abilities that can restore data in a

matter of hours further address business needs.

 Industry-specific applications — Due to the high-risk and sensitive nature of certain

industries, Azure has designed specific applications to address unique needs.

Government, health care, manufacturing, and financial services benefit greatly from

Azure’s many features, including offline cloud services, individualized security needs,

simplified compliance, and modernized customer apps.

References:

 Azure RBAC

action: Microsoft.Storage/storageAccounts/blobServices/containers/blobs/write (for

writing to an existing blob)

or Microsoft.Storage/storageAccounts/blobServices/containers/blobs/add/action (for

writing a new blob to the destination)

 Microsoft.Storage/storageAccounts/blobServices/containers/blobs/read

 - by Priyanka Dingankar
 Senior Full Stack Developer

https://learn.microsoft.com/en-us/azure/role-based-access-control/resource-provider-operations#microsoftstorage
https://learn.microsoft.com/en-us/azure/role-based-access-control/resource-provider-operations#microsoftstorage
https://learn.microsoft.com/en-us/azure/role-based-access-control/resource-provider-operations#microsoftstorage

	Using .NET(Csharp) Implemented Data Transfer - Azure Blob Storage to Web Application.
	Problem Statement: -
	 Our Company firstly use one specific server or database server to store files.
	 We can upload only specific size of files. If we upload more then server file size then
	Getting error-file storage has been full.
	 When we use database server: -
	 If you store docs outside of the database you will have missing documents and broken links soomer not later. Your backup/restore scenario is a lot more complex: you have no way to ensure that all data is from the same point in time.
	Introduction: -
	Architecture Diagram :
	What is Azure Blob Storage?
	What is Azure Blob Storage used for?
	How does BLOB storage work?
	Create a Azure Storage resource using Azure Portal :-

